Tetrahedron Letters, Vol.30, No.6, **pp 747-750,** 1989 0040-4039/89 \$3.00 + .OO Printed in Great Britain

CLAY MONTMORILLONITE-CATALYZED REGIOSELECTIVE ADDITION OF SILYL KETENE ACETALS TO PYRIDINE DERIVATIVES: SYNTHESIS OF N-SILYLDIHYDROPYRIDINES

Makoto Onaka, * Ryosuke Ohno, and Yusuke Izumi * Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Chikusa, Nagoya 464, Japan

Summary: Clay montmorillonite is an efficient catalyst for addition of silyl ketene acetals to pyridine derivatives with electron-withdrawing groups to afford N-silyldihydropyridines.

We have been utilizing clay montmorillonite as a heterogeneous acid catalyst in carbon-carbon bond formation reactions such as aldol¹ and Michael² reactions of enol silanes. During investigating the Michael-type addition of silyl ketene acetals, we discovered that, in the presence of montmorillonite, silyl ketene acetals add to an electron-deficient pyridine nucleus. Here we wish to report that montmorillonite catalyzes the direct addition of silyl ketene acetals to pyridines bearing electron-withdrawing groups in a highly regioselective manner to afford N-silyldihydropyridines, comparing the clay catalyst with conventional, homogeneous promoters. Dihydropyridines have generally been synthesized via the addition of a nucleophile to reactive 1-acylpyridinium salts. 3

In the presence of iron (III) or aluminium (III) ion-exchanged montmorillonite (abbreviated as Fe-Mont and Al-Mont, respectively), 4 silyl ketene acetal **(2a)** did not react with pyridine. However, pyridine derivatives bearing one electron-withdrawing group or more **(la, ld,** le, and If) are subjected to regioselective addition reactions with silyl ketene acetals as shown in Table 1. Of the three cyano-substituted pyridines, only the meta form was reactive to 2a to give 4-substituted N-silyl-1, 4-dihydropyridine in 94% yield. The addition of **2a** at the 2- or 6-position of the pyridine nucleus was not observed. The work-up of the present method is so simple (only

Pyridine deriv.	Enol silane	Cat.	Time/h	Product ^b	Yield/%
m-Cyanopyridine (1a)	OSiMe ₃ OEt $(2a)$	Fe-Mont	0.2	EtO ₂ C SiMe ₃ NC [.] (3a)	94
1a o-Cyanopyridine (1b)	2a 2a	Al-Mont Al-Mont	0.25 19	3a	95 0
p-Cyanopyridine (1c)	2a	Al-Mont	19		0
1a	OSiMe ₃ OMe (2b)	Fe-Mont	2.0	MeO ₂ C SiMe ₃ NC (3 _b)	94
1a	2 _b	Al-Mont	3.3	3 _b	94
1a	OSitBuMe ₂ OMe $(2c)$	Fe-Mont	6.0	MeO ₂ C Si ^t BuMe ₂ NC [.] (3c)	89
1a	2 _c	Al-Mont	12	3 _c	67
1a	OSiMe ₃ (2d) Ph	Al-Mont	17		0
Ethyl nicotinate (1d)	2a	Al-Mont	3.0	EtO ₂ C EtO ₂ C SiMe ₃ (3d)	20°
1d	2a	Al-Mont	1.5	3d	84^d
3,5-Pyridine- dicarboxylic acid dimethyl ester (1e)	OSiMe ₃ (2e)	Al-Mont	$0.2\,$	CO ₂ Me MeO ₂ MeO ₂ C ៓ (3e)	87 ^e
Isoquinoline (1f)	2a	Al-Mont	3.0	iMe ₃ CO ₂ Et (3f)	80°
1f	2 _c	Al-Mont	25	SitBuMe ₂ CO ₂ Me (3q)	43

Table 1. The reactions of pyridine derivatives with enol silanes.^a

Notes of Table 1

- a) In the presence of montmorillonite $(0.5 g)$, the reaction of 1 (1 mmol) with 2 (2 mmol) was performed in $\texttt{CH}_2\texttt{Cl}_2$ at r.t.
- b) All products were confirmed by 'H and '³C NMR, IR, and elemental analysis.
- c) The reaction was performed at 0 \degree C.
- d) The reaction was performed in EtNO₂ at 0 ^oC.
- e) 3e could be purified by recrystallization after hydrolysis of an N-silylated product. The N-silylated product could not be purified by distillation owing to its high boiling point.

filtering the montmorillonite off) that the adduct is isolable in the form of N-silyldihydropyridine without being hydrolyzed. 2b and 2c also add to la at the 4-position.

The catalytic activity of the clay is dependent on the sort of exchageable cation in montmorillonite, and the following order was observed in the reaction of 1a with 2c: $Fe^{3+}(89\% \text{ yield}) > Co^{2+}(68\%) > Cu^{2+}(59\%) \sim 2n^{2+}(53\%)$ \sim Al³⁺(43%) \sim Ni²⁺(40%) \sim Sn⁴⁺(39%).⁵

In contrast to silyl ketene acetals, silyl enol ether (2d) gave no adducts.

Except for the reaction of ethyl nicotinate $(\mathbf{1d})$, CH_2Cl_2 is a preferable solvent in the present system.

The reaction of isoquinoline **(If)** with 2a or 2c afforded l-substituted N-silyl-1,2-dihydroisoquinoline selectively, while quinoline produced no adducts.

Table 2 summarizes the comparison of catalytic activity between montmorillonite and some homogeneous promoters, showing that the montmorillonite catalyst has higher catalytic activities and the advantage of isolation of Nsilylated 1,4-dihydropyridine in a pure form. We assume that pyridine derivatives are adsorbed on acid sites on montmorillonite and activated enough to be attacked by silyl ketene acetals.

A typical experimental procedure is as follows. Fe-Mont (0.5 g) was placed in a flask and dried at 120 $^{\circ}$ C/0.5 Torr for 3 h, and then suspended in CH_2Cl_2 (5 ml). 1a (1 mmol) and 2a (2 mmol) were added successively and stirred at r.t. for 0.2 h. The reaction mixture was passed through a pad of Celite and the filtrate was evaporated and distilled on Kugelrohr to yield 3a in 94% yield.

N-Silyl-1,4_dihydropyridines **(3a,** 3b, 3c) were directly oxidized with ceric ammonium nitrate (2 eq, in CH₃CN, -45 ^OC) to give corresponding 4substituted 3-cyanopyridines in 95, 26, and 65% yields, respectively.

The present work was partially supported by a Grant-in-Aid for Scientific Research No. 63750812 from the Ministry of Education, Science *and* Culture.

Promoter Solv. Time/h Yield of 3a/% Fe-Mont^b CH₂C₁ 0.2 94 Al-Mont^b CH₂C1₂ 0.25 95 ________--_-------------------------------------- $Me₃SiOTf^C$ $CH₂Cl₂$ 0.3 73 Bu_4NF^d THF 2.0 68^e $2nBr_2^f$ CH₂C₁₂ 0.35 34 BF_3 'OEt₂^f CH₂C1₂ 17 0 None CH_2Cl_2 3.5 0 a) The reaction of la **(1** mmol) with 2a (2 mmol) was performed at r.t.

Table 2. Comparison of various promoters in the reaction of $1a$ with $2a$.^a

- b) 0.5 g. c) 12 mol%. d) IO mo18.
- e) Total yield after oxidation to 4-substitute 3-cyanopyridine with ceric ammonium nitrate.⁶
- f) 100 mol%.

References and Notes

- 1. M. Kawai, M. Onaka, Y. Izumi, Bull. Chem. Soc. Jpn., 61, 1237 (1988).
- 2. M. Kawai, M. Onaka, Y. Izumi, Bull. Chem. Soc. Jpn., 61, 2157 (1988).
- 3. E. Piers, M. Soucy, Can. J. Chem., 52, 3563 (1974); K. Akiba, Y. Iseki, M. Wada, Tetrahedron Lett., 23, 429 (1982); D. L. Comins, A. H. Abdullah, 2. Org. Chem., 47, 4315 (1982); K. Akiba, Y. Nishihara, M. Wada, Tetrahedron Lett., 24, 5269 (1983).
- 4. Fe-Mont and Al-Mont were prepared from sodium ion-exchanged montmorillonite and Fe(NO₃)₃ or Al(NO₃)₃. Ion exchange procedures, see Ref. 1.
- 5. In the presence of montmorillonite (0.5 g), the reaction 1a (1 mmol) with 2c (2 mmol) was performed in CH_2Cl_2 at r.t. for 6 h.
- 6. We could not isolate an N-silylated adduct.

(Received in Japan 8 December 1988)