Tetrahedron Letters, Vol.30, No.6, pp 747-750, 1989 0040-4039/89 \$3.00 + .00 Printed in Great Britain Pergamon Press plc

CLAY MONTMORILLONITE-CATALYZED REGIOSELECTIVE ADDITION OF SILYL KETENE ACETALS TO PYRIDINE DERIVATIVES: SYNTHESIS OF N-SILYLDIHYDROPYRIDINES

Makoto Onaka,^{*} Ryosuke Ohno, and Yusuke Izumi^{*} Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Chikusa, Nagoya 464, Japan

Summary: Clay montmorillonite is an efficient catalyst for addition of silyl ketene acetals to pyridine derivatives with electron-withdrawing groups to afford N-silyldihydropyridines.

We have been utilizing clay montmorillonite as a heterogeneous acid catalyst in carbon-carbon bond formation reactions such as aldol¹ and Michael² reactions of enol silanes. During investigating the Michael-type addition of silyl ketene acetals, we discovered that, in the presence of montmorillonite, silyl ketene acetals add to an electron-deficient pyridine nucleus. Here we wish to report that montmorillonite catalyzes the direct addition of silyl ketene acetals to pyridines bearing electron-withdrawing groups in a highly regioselective manner to afford N-silyldihydropyridines, comparing the clay catalyst with conventional, homogeneous promoters. Dihydropyridines have generally been synthesized via the addition of a nucleophile to reactive 1-acylpyridinium salts.³

In the presence of iron (III) or aluminium (III) ion-exchanged montmorillonite (abbreviated as Fe-Mont and Al-Mont, respectively),⁴ silyl ketene acetal (2a) did not react with pyridine. However, pyridine derivatives bearing one electron-withdrawing group or more (1a, 1d, 1e, and 1f) are subjected to regioselective addition reactions with silyl ketene acetals as shown in Table 1. Of the three cyano-substituted pyridines, only the meta form was reactive to 2a to give 4-substituted N-silyl-1,4-dihydropyridine in 94% yield. The addition of 2a at the 2- or 6-position of the pyridine nucleus was not observed. The work-up of the present method is so simple (only

Pyridine deriv.	Enol silane	Cat.	Time/h	Product ^b N	lield/%
m-Cyanopyridine (1a)	OSiMe ₃ OEt (2a)	Fe-Mont	0.2	EtO ₂ C NC (3a)	94
1a	2a	Al-Mont	0.25	3a	95
o-Cyanopyridine (1b)	2a	Al-Mont	19		0
p-Cyanopyridine (1c)	2a	Al-Mont	19	~-	0
1a	OSiMe ₃ OMe (2b)	Fe-Mont	2.0	MeO ₂ C NC (3b)	94
1a	2b	Al-Mont	3.3	3b	94
1a	OSi ^t BuMe ₂ OMe (2c)	Fe-Mont	6.0	MeO ₂ C NC (3c)	89 1e₂
1a	2c	Al-Mont	12	3c	67
1a	$ OSiMe_3$ Ph (2d)	Al-Mont	17		0
Ethyl nicotinate (1d)	2a	Al-Mont	3.0	EtO ₂ C EtO ₂ C (3d)	20 ^C
1d	2a	Al-Mont	1.5	3d	84 ^d
3,5-Pyridine- dicarboxylic acid dimethyl ester (1 e)	OSiMe ₃ OMe (2e)	Al-Mont	0.2	MeO ₂ C MeO ₂ C MeO ₂ C (3e)	87 ^e
Isoquinoline (1f)	2a	Al-Mont	3.0	(3f) N-SiMe ₃ (CO ₂ Et	80 ^c
1£	2c	Al-Mont	25	(3g) CO ₂ Me	43 e 2

Table 1. The reactions of pyridine derivatives with enol silanes.^a

Notes of Table 1

- a) In the presence of montmorillohite (0.5 g), the reaction of 1 (1 mmol) with 2 (2 mmol) was performed in CH_2Cl_2 at r.t.
- b) All products were confirmed by 1 H and 13 C NMR, IR, and elemental analysis.
- c) The reaction was performed at 0 $^{\circ}$ C.
- d) The reaction was performed in $EtNO_2$ at 0 ^{O}C .
- e) 3e could be purified by recrystallization after hydrolysis of an N-silylated product. The N-silylated product could not be purified by distillation owing to its high boiling point.

filtering the montmorillonite off) that the adduct is isolable in the form of N-silyldihydropyridine without being hydrolyzed. 2b and 2c also add to 1a at the 4-position.

The catalytic activity of the clay is dependent on the sort of exchageable cation in montmorillonite, and the following order was observed in the reaction of 1a with 2c: Fe³⁺(89% yield) > Co²⁺(68%) > Cu²⁺(59%) \sim Zn²⁺(53%) > Al³⁺(43%) \sim Ni²⁺(40%) \sim Sn⁴⁺(39%).⁵

In contrast to silyl ketene acetals, silyl enol ether (2d) gave no adducts.

Except for the reaction of ethyl nicotinate (1d), CH_2Cl_2 is a preferable solvent in the present system.

The reaction of isoquinoline (1f) with 2a or 2c afforded 1-substituted N-silyl-1,2-dihydroisoquinoline selectively, while quinoline produced no adducts.

Table 2 summarizes the comparison of catalytic activity between montmorillonite and some homogeneous promoters, showing that the montmorillonite catalyst has higher catalytic activities and the advantage of isolation of Nsilylated 1,4-dihydropyridine in a pure form. We assume that pyridine derivatives are adsorbed on acid sites on montmorillonite and activated enough to be attacked by silyl ketene acetals.

A typical experimental procedure is as follows. Fe-Mont (0.5 g) was placed in a flask and dried at 120 $^{\circ}$ C/0.5 Torr for 3 h, and then suspended in CH₂Cl₂ (5 ml). **1a** (1 mmol) and **2a** (2 mmol) were added successively and stirred at r.t. for 0.2 h. The reaction mixture was passed through a pad of Celite and the filtrate was evaporated and distilled on Kugelrohr to yield **3a** in 94% yield.

N-Silyl-1,4-dihydropyridines (**3a**, **3b**, **3c**) were directly oxidized with ceric ammonium nitrate (2 eq, in CH_3CN , -45 ^{O}C) to give corresponding 4-substituted 3-cyanopyridines in 95, 26, and 65% yields, respectively.

The present work was partially supported by a Grant-in-Aid for Scientific Research No. 63750812 from the Ministry of Education, Science and Culture.

Time/h	Yield of 3a /%
0.2	94
0.25	95
0.3	73
2.0	68 ^e
0.35	34
17	0
3.5	0
1 mmol) w:	ith 2a (2 mmol)
d) 10 r	mol%.
•	, d) 10 m

Table 2. Comparison of various promoters in the reaction of 1a with 2a.^a

3-cyanopyridine with ceric ammonium nitrate.⁶ f) 100 mol%.

References and Notes

- 1. M. Kawai, M. Onaka, Y. Izumi, <u>Bull</u>. <u>Chem</u>. <u>Soc</u>. <u>Jpn</u>., **61**, 1237 (1988).
- 2. M. Kawai, M. Onaka, Y. Izumi, <u>Bull</u>. <u>Chem</u>. <u>Soc</u>. <u>Jpn</u>., **61**, 2157 (1988).
- 3. E. Piers, M. Soucy, <u>Can</u>. <u>J</u>. <u>Chem</u>., **52**, 3563 (1974); K. Akiba, Y. Iseki, M. Wada, <u>Tetrahedron Lett</u>., **23**, 429 (1982); D. L. Comins, A. H. Abdullah, <u>J</u>. <u>Org</u>. <u>Chem</u>., **47**, 4315 (1982); K. Akiba, Y. Nishihara, M. Wada, Tetrahedron Lett., **24**, 5269 (1983).
- 4. Fe-Mont and Al-Mont were prepared from sodium ion-exchanged montmorillonite and $Fe(NO_3)_3$ or $Al(NO_3)_3$. Ion exchange procedures, see Ref. 1.
- 5. In the presence of montmorillonite (0.5 g), the reaction 1a (1 mmol) with 2c (2 mmol) was performed in CH₂Cl₂ at r.t. for 6 h.
- 6. We could not isolate an N-silylated adduct.

(Received in Japan 8 December 1988)